A discrete mean-value theorem for the higher derivatives of the Riemann zeta function

نویسندگان

چکیده

We show that the nth derivative of Riemann zeta function, when summed over non-trivial zeros zeta, is real and positive/negative in mean for n odd/even, respectively. this by giving a full asymptotic expansion these sums.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Discrete Mean Value of the Derivative of the Riemann Zeta Function

In this article we compute a discrete mean value of the derivative of the Riemann zeta function. This mean value will be important for several applications concerning the size of ζ(ρ) where ζ(s) is the Riemann zeta function and ρ is a non-trivial zero of the Riemann zeta function.

متن کامل

Mean Value Theorems for Generalized Riemann Derivatives

Let x, e > 0, uo < ... u O be real numbers. Let f be a real valued function and let A (h; u, w)f (x) h-d be a difference quotient associated with a generalized Riemann derivative. Set I = (x + uoh, x + Ud+eh) and let f have its ordinary (d 1)st derivative continuous on the closure of I and its dth ordinary derivative f('I) existent on 1. A necessary and sufficient condition that a ...

متن کامل

An Effective Universality Theorem for the Riemann Zeta Function

Let 0 < r < 1/4, and f be a non-vanishing continuous function in |z| ≤ r, that is analytic in the interior. Voronin’s universality theorem asserts that translates of the Riemann zeta function ζ(3/4 + z + it) can approximate f uniformly in |z| < r to any given precision ε, and moreover that the set of such t ∈ [0, T ] has measure at least c(ε)T for some c(ε) > 0, once T is large enough. This was...

متن کامل

Some Mean Value Theorems for the Riemann Zeta-function and Dirichlet L-functions

The theory of the Riemann zeta-function ζ(s) and Dirichlet L-functions L(s, χ) abounds with unsolved problems. Chronologically the first of these, now known as the Riemann Hypothesis (RH), originated from Riemann’s remark that it is very probable that all non-trivial zeros of ζ(s) lie on the line < s = 12 . Later on Piltz conjectured the same for all of the functions L(s, χ) (GRH). The vertical...

متن کامل

Riemann ’ s zeta function and the prime number theorem

16 Riemann’s zeta function and the prime number theorem We now divert our attention from algebraic number theory to talk about zeta functions and L-functions. As we shall see, every global field has a zeta function that is intimately related to the distribution of its primes. We begin with the zeta function of the rational field Q, which we will use to prove the prime number theorem. We will ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2022

ISSN: ['0022-314X', '1096-1658']

DOI: https://doi.org/10.1016/j.jnt.2022.03.004